

технологии х разум для созидания

влияние добавки на основе алюминатов кальция на свойства MgO-C огнеупоров для сталеразливочных ковшей

А. О. Мигашкин

Руководитель направления по технологии производства изделий, техническое управление

XX Конференция огнеупорщиков и металлургов МИСиС, Москва май 2023

опережающий износ футеровки стальковша

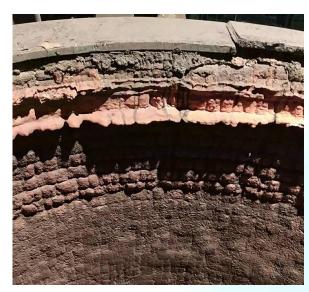
- виды износа
- вертикальное растрескивание

влияние СА добавки на свойства MgO-C изделий

- о проекте
- экспериментальная часть
- этапы производства опытных изделий

результаты исследования

- предел прочности при сжатии
- открытая пористость
- предел прочности при изгибе
- ТКЛР
- рентегнофазовый состав
- микроструктурный анализ
- выводы и планы



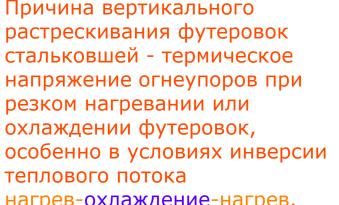
опережающий износ футеровки стальковша

виды износа

коррозионный и эрозионный износ

сколы и диагональные трещины

вертикальное растрескивание



опережающий износ футеровки стальковша

вертикальное растрескивание

периоды изменения температурного поля в стальковше

Причина вертикального растрескивания футеровок стальковшей - термическое напряжение огнеупоров при резком нагревании или охлаждении футеровок, особенно в условиях инверсии теплового потока нагрев-охлаждение-нагрев.

влияние СА добавки на свойства MgO-С изделий

влияние СА добавки на свойства MgO-C изделий

проекте

Для повышения срока эксплуатации футеровок стальковшей важно, чтобы возникающие при эксплуатации термические и механические напряжения были минимальны и быстро рассеивались.

задача проекта

разработка MgO-C огнеупоров, способных противостоять термомеханическим нагрузкам и при этом обладать высокой коррозионной стойкостью

цель проекта

исследование физико-механических показателей, фазового состава, а также микроструктуры MgO-C изделий при введении в состав добавки на основе алюминатов кальция

Исследование включало:

- эксперименты с различным фракционным размером добавки от 0 до 3 мм;
- определение показателей после термообработки и коксования.

влияние СА добавки на свойства MqO-C изделий

экспериментальная часть

Введение кальций-алюминатной (СА) добавки осуществляли с фракционным размером от 0 до 3 мм, уменьшая при этом основные фракции плавленого периклаза на соответствующее количество вводимой добавки. Всего изучалось 4 состава.

минерально-фазовый состав кальций-алюминатной добавки

компонент содержание (объемн.)

68-75 % CaO·2Al₂O₃

19-23 % CaO·6Al₂O₃

3-7 % АМШ

Мохоли то маториали	составы			
Исходные материалы		2	3	4
плавленый периклаз фр. 6-0 мм	89	86	86	85
графит	10	10	10	10
добавка СА, фр. 0,063-0 мм	-	+	-	-
добавка СА, фр. 1-0 мм	-	-	+	+
добавка СА, фр. 3-1 мм	-	-	-	+
комбиниро <mark>ванное</mark> связующ <mark>ее</mark>	+	+	+	+

этапы производства опытных изделий

огнеупорные изделия для эксперимента производились по стандартной схеме

смешение

Смешение исходных компонентов осуществляли в смесителе интенсивного действия фирмы «EIRICH».

прессование

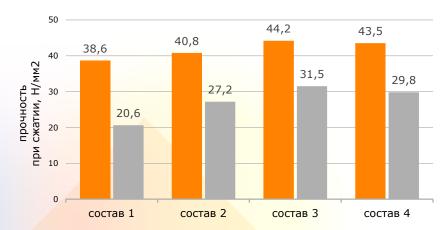
Maccy прессовали на гидравлическом прессе фирмы «Laeis» по трехступенчатому режиму в формате mini-key.

термообработка

Термическую обработку сырца производили в туннельной термопечи «Riedhammer» при макс. температуре 240 °C.

результаты исследования

предел прочности при сжатии


результаты лабораторных испытаний предела прочности при сжатии образцов при комнатной температуре и после коксования

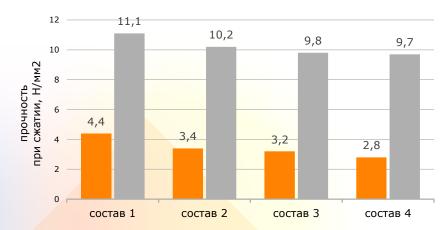
стандарты определения

Определение предела прочности при сжатии при комнатной температуре проводили по ГОСТ 4071.1-2021.

Коксование образцов осуществляли в коксовой засыпке при температуре 990±10 °C в шахтной печи ПШ-1,0-45, согласно ГОСТ 30771-2001.

график изменения предела прочности при сжатии

пористость открытая при сжатии


результаты лабораторных испытаний открытой пористости образцов при комнатной температуре и после коксования

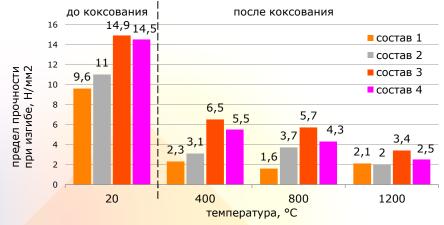
стандарты определения

Определение открытой пористости осуществляли по ГОСТ 2409-2014 на установке ЭКВ-М.

Коксование образцов осуществляли в коксовой засыпке при температуре 990±10 °C в шахтной печи ПШ-1,0-45, согласно ГОСТ 30771-2001

график изменения открытой пористости

предел прочности при изгибе


результаты лабораторных испытаний предела прочности при изгибе при комнатной температуре до коксования при комнатной температуре и после коксования при повышенных температурах

стандарты определения

Определение осуществляли на образцах в виде параллелепипеда при комнатной температуре по ГОСТ 50526-93, при повышенных температурах по ГОСТ 31040-2002.

Коксование образцов осуществляли в коксовой засыпке при температуре 990±10 °C в шахтной печи ПШ-1,0-45, согласно ГОСТ 30771-2001

график изменения предела прочности при изгибе

результаты исследования

термический коэффициент линейного расширения

условия испытаний

Дилатометрические измерения проводили на приборе DIL 402C φ.«Netzsch»

среда: инертная, аргон

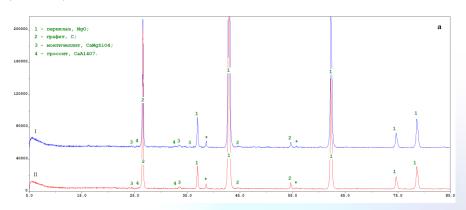
скорость нагрева: 10 К/мин

Высокий термический коэффициент линейного расширения огнеупоров ограничивает срок службы футеровки при довольно большой ее остаточной толщине вследствие сколов и вертикального растрескивания в условиях инверсии теплового потока (нагрев-охлаждение-нагрев).

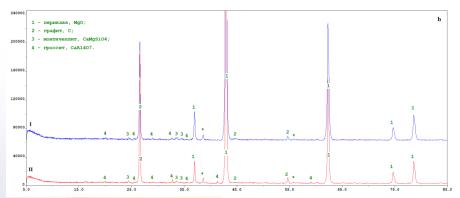
результаты лабораторных испытаний термического коэффициента линейного расширения в интервале температур 20-1500 °C

показатель	состав 1	состав 2	состав 3	состав 4
ТКЛР, 1/К∙10-6	10,62	9,57	9,18	8,84
относительное удлинение, $\Delta L/L_0$, %	1,57	1,42	1,35	1,31

рентгенофазовый анализ


условия испытаний

рентгенофазовый анализ проводили с помощью дифрактометра X"tra фирмы ARL

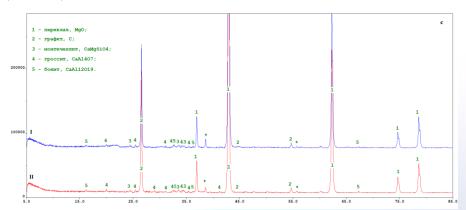

5-85° скорость съемки: 8 град/мин диапазон:

0,02 ° $Cu_{\kappa a}$ тип излучения: шаг съемки:

рентгенофазовый анализ состава 2

рентгенофазовый анализ состава 3

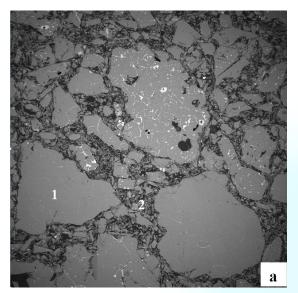
рентгенофазовый анализ

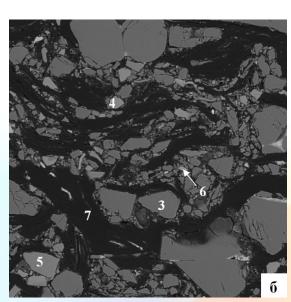

условия испытаний

рентгенофазовый анализ проводили с помощью дифрактометра X"tra фирмы ARL

5-85° скорость съемки: 8 град/мин диапазон:

0,02 ° тип излучения: шаг съемки: $Cu_{\kappa_{\alpha}}$


рентгенофазовый анализ состава 4

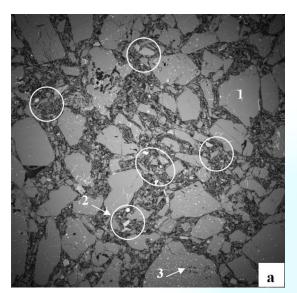


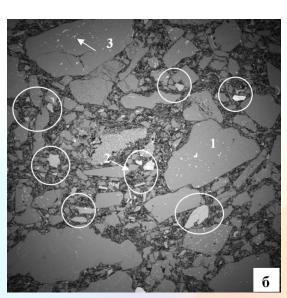
микроструктурный анализ

Микроструктурный анализ изделий. Анализ проводился на детекторе BSE.

анализ изделия состава 2

фото а	общая микроструктура, x20		
1	зерно плавленого периклаза		


матрица огнеупора


фото б микроструктура матрицы, х500

- частица периклаза
- алюминат кальция
- бонит
- монтичеллит
- графит

микроструктурный анализ

Микроструктурный анализ периклазоуглеродистых образцов, х16 Анализ проводился на детекторе BSE.

фото а	состав 3
фото б	состав 4
1	зерно плавленого периклаза
2	включения зерен и частиц кальций-алюминатной добавки
3	пленки силикатов

выводы и планы

общие выводы

Кальций-алюминатная добавка в зерновых фракциях позволяет:

- повысить физико-механические свойства периклазоуглеродистых изделий
- снизить термический коэффициент линейного расширения периклазоуглеродистых изделий на 10-16% в зависимости от фракционного размера добавки.

Внедрение добавки позволяет снизить вероятность разрушения рабочей поверхности футеровки, из-за возникающих сжимающих напряжений в кладке при первых наливах расплава металла в сталеразливочный ковш.

планы

Планируется произвести опытно-промышленную партию изделий с последующей апробацией в рабочей футеровке сталеразливочного ковша.

спасибо

+7 (982) 300-59-17

amigashkin@magnezit.com

сайт Группы Магнезит