

технологии х разум для созидания

моделирование процесса обжига магнезита в многоподовой печи

XX Конференция огнеупорщиков и металлургов МИСиС, Москва май 2023

Борзов Андрей Николаевич

к.т.н., инженер – технолог

содержание

анализ решения задачи моделирования многоподовой печи

- общие сведения
- принцип работы
- входные и выходные параметры обжига
- явления, происходящие в печи
- математические модели многоподовой печи
- варианты математического моделирования процесса обжига

математическое моделирование по варианту 3

- постановка задачи
- динамически изменяющаяся расчетная сетка

результаты расчетов

- количество частиц
- скорость и время нахождения частиц на поде без воздействия лопаток
- скорость и время нахождения частиц на поде под воздействием лопаток
- скорость и время нахождения частиц на поде послойно
- алгоритмическая сложность вычислений

выводы

- анализ модельных решений
- рекомендации по построению вычислений для всей многоподовой печи
- практические наработки
- благодарности

анализ решения задачи мо<mark>делир</mark>ования многоподовой печи

анализ решения задачи моделирования многоподовой печи

Многоподовая печь Бета Рекорд 100-2, Комплекс плотноспеченных порошков Рекорд. Саткинская производственная площадка Группы Магнезит

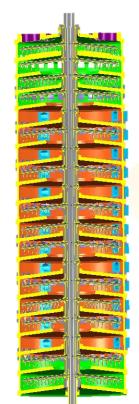
общие сведения

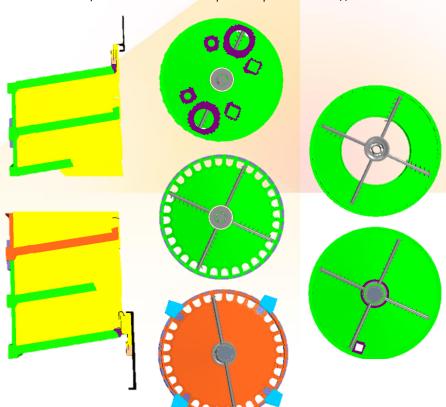
параметры печи

24300 мм высота

7720 мм диаметр

19 шт. количество подов

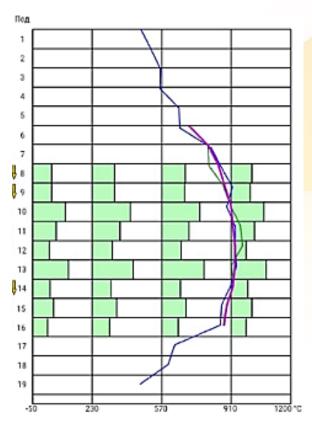

1100, 1300, 1600 MM высота одного пода


42 шт. количество горелок

анализ решения задачи моделирования многоподовой печи

3D модель многоподовой печи верхний и нижний песочный затвор печи особенности расположение входов и выходов для газа и материала в различных подах печи

принцип работы


зоны многоподовой печи

- зона предварительного нагрева материала (1-2 под)
- ▶ зона обжига материала (3 13 под) с 4 горелками с направленным пламенем по касательной
- зона охлаждения материала (13-19 под)
- зона охлаждения вращающего центрального вала с рукоятями и лопатками

анализ решения задачи моделирования многоподовой печи

задание характера обжига магнезита в печи оператором

входные и выходные параметры обжига

входные параметры

- расход материала на вход в печи (т/час)
- фракционный состав материала на вход в печь (0-25 мм)
- скорость вращения центрального вала (об/мин)
- кривая нагрева материала по подам для АСУТП
- температура газа охлаждения центрального вала и воздуха горения (град. С)

выходные параметры

степень обжига магнезита

явления, происходящие в печи

Практически все феномены, происходящие в печи, уже были рассмотрены в более ранних научных работах.

основные феномены

- пересыпной характер движения материала сверху 1 пода до низа 19 пода и продвижением его от/к центральному валу;
- ▶ вращение разного количества рукоятей с разновысотными лопатками, охлаждаемые внутри воздухом из центрального вала, с образованием борозд материала на поду и возникновением механических напряжений лопаток;
- слой материала представляет собой пористый слой движущийся с определенной скоростью;

- ▶ горение природного газа в горелочных блоках (6 -16 подов) с тангенциальным выпуском продуктов реакции и вывод их через горелочные туннели;
- химическая реакция декарбонизации магнезита (MgCO₃-> MgO+CO₂);
- нагрев/охлаждение магнезита через слои футеровки, поды печи, малоподвижные слои материала стационарно находящихся на поду, а также через газодинамику продуктов горения.

исследовательские работы

- 1. Борзов, А.Н. Моделирование обжига магнезита в шахтной печи. Сатка, 2018. Конференция;
- 2. Борзов, А.Н. Моделирование обжига магнезита во вращающей печи. Москва, МИСиС, 2019. КОиМ;
- 3. Борзов, А.Н. Моделирование обжига магнезита в кольцевой печи. Сатка, 2019. Конференция;
- 4. Борзов, А.Н. Моделирование обжига магнезита в туннельной печи. Москва, МИСиС, 2022. КОиМ;

явления, происходящие в печи

В данной работе рассматривается пересыпной характер движения материала с образованием борозд.

феномены, рассматриваемые в данной работе

- пересыпной характер движения материала сверху 1 пода до низа 19 пода и продвижением его от/к центральному валу;
- вращение разного количества рукоятей с разновысотными лопатками, охлаждаемые внутри воздухом из центрального вала, с образованием борозд материала на поду и возникновением механических напряжений лопаток.

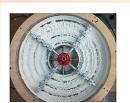
видео образования борозд материала на поде печи от вращения рукоятей

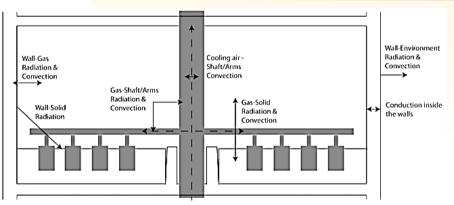
математические модели многоподовой печи

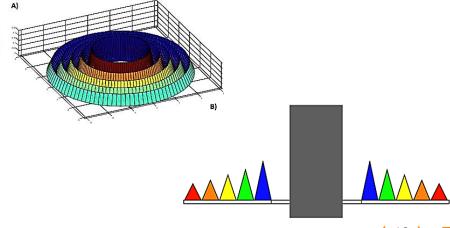
лабораторные испытания модели многоподовой печи. Эксперимент по обжигу каолинита $(Al_2H_4O_9Si_2)$

фотографии подов после пробных экспериментов по обжигу в модели многоподовой печи (поды 1-8)

лабораторная установка многоподовой печи в пропорции 1/12 от реальной печи



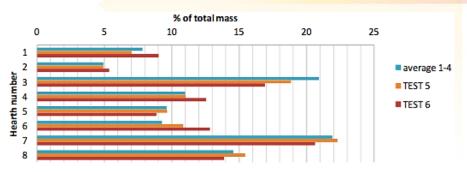

Alexi Eskilin. Dynamic modelling of a multiple hearth furnace. Aalto University, 2014.


математические модели многоподовой печи

лабораторные испытания модели многоподовой печи. Эксперимент по обжигу каолинита ($Al_2H_4O_9Si_2$)

пути распространения тепла согласно МЕН модели

- А) вид на сплошной стенд с 5 кольцевыми отсеками
- В) вид на сплошной стенд в разрезе

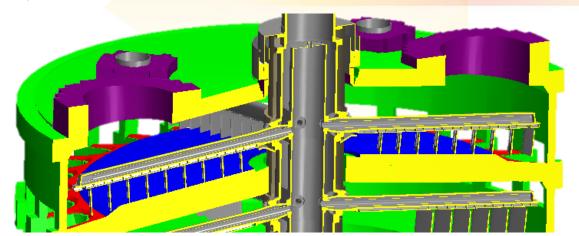


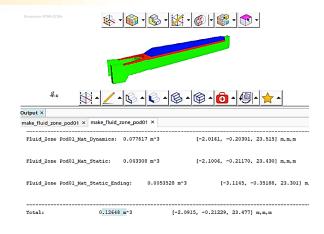
математические модели многоподовой печи

лабораторные испытания модели многоподовой печи. Эксперимент по обжигу каолинита ($Al_2H_4O_9Si_2$)

график распространения общей массы в печи для тестов 5 и 6 в сравнении со средним результатом тестов 1-4

- А) основное окно программы-симулятора GUI
- B) окно визуализации результатов симуляции программы GUI

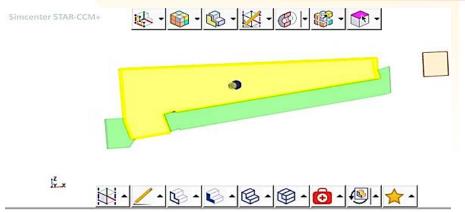


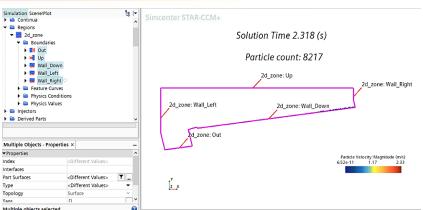

варианты математического моделирования процесса обжига

предлагаемые варианты решения задачи. варианты 1 и 2

вариант 1 - 3D полный

вариант 2 - 1/32 пода

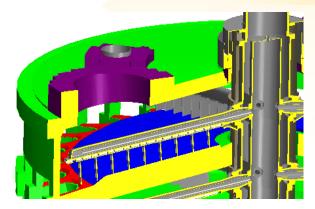




анализ движения материала на поде по предлагаемой математической модели

предлагаемые варианты решения задачи. вариант 3 - 2D модель движения материала по поду под воздействием рукоятей с лопатками

вариант 3 - 2D модель движения материала по поду под воздействием рукоятей с лопатками



анализ движения материала на поде по предлагаемой математической модели

входные и выходные параметры для моделирования

3D визуализация положения материала на поде

входные параметры

- расход материала в печи;
- место подачи;
- фракционный состав материала;
- скорость вращения центрального вала.

доп. входные параметры

 алгоритмическая сложность вычисления

выходные параметры

- распределение высоты материала по поду с последующим 3D построением области;
- послойная скорость движения материала по поду;
- время нахождения материала на поде.

математическое моделирование по варианту 3

постановка задачи

настройка математической модели

общий вид

- Models
 - Constant Density
 - DEM Boundary Forces
 - Discrete Element Model (DEM)
 - Gas Gas
 - Gradients
 - Gravity
 - Implicit Unsteady
 - K-Epsilon Turbulence
 - ► Lagrangian Multiphase
 - Multiphase Interaction
 - Realizable K-Epsilon Two-Layer
 - Remeshing
 - Reynolds-Averaged Navier-Stokes
 - Segregated Flow
 - Solution Interpolation
 - Turbulent
 - Two-Layer All y+ Wall Treatment
 - Two Dimensional
 - Wall Distance

настройка Лагранжевой фазы

- Lagrangian Multiphase
- Lagrangian Phases
 - Particle
 - Models
 - Constant Density DEM Particles

 - Drag Torque
 - Pressure Gradient Force
 - Residence Time
 - Solid
 - ▶ MGCO3
 - Spherical Particles
 - Two-Way Coupling
 - **Boundary Conditions**

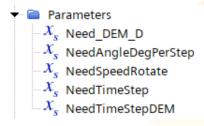
настройка взаимодействия внутри Лагранжевой фазы

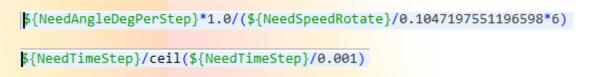
- Multiphase Interaction
 - Phase Interactions Particle-Particle

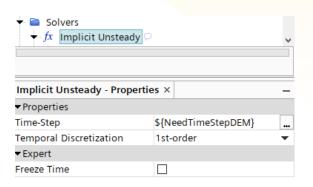
 - DEM Phase Interaction Hertz Mindlin
 - Rolling Resistance
 - Particle-Wall
 - Models
 - DFM Phase Interaction Hertz Mindlin
 - Rolling Resistance

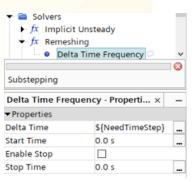
изменяемые параметры мат модели

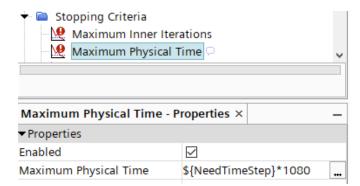
- X_s NeedAngleDegPerStep
- X_c NeedSpeedRotate
- X_c NeedTimeStep
- X_c NeedTimeStepDEM

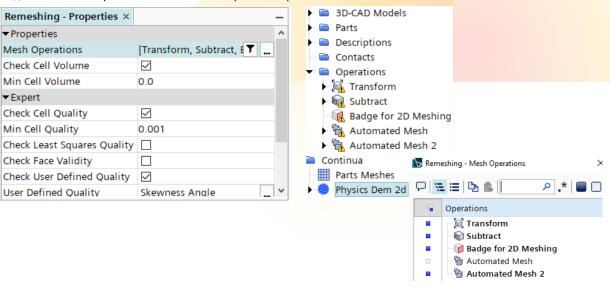

- Retain Injected Parcels ▶ Conditions ▼ 🚞 Values
- ▶ 😾 Point Inclusion Probability ▶ 🦃 Angular Velocity
- ▶ 🤄 Mass Flow Rate ▶ ₩ Particle Diameter
- ▶ 🤄 Velocity Injector 1 A Lagrangian phase injector

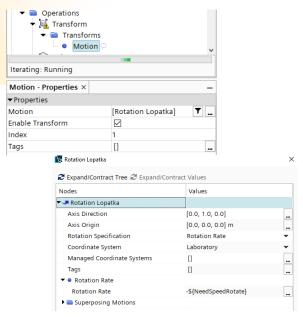



постановка задачи


варьируемые параметры математической модели и использование их в решателе


изменяемые параметры математической модели

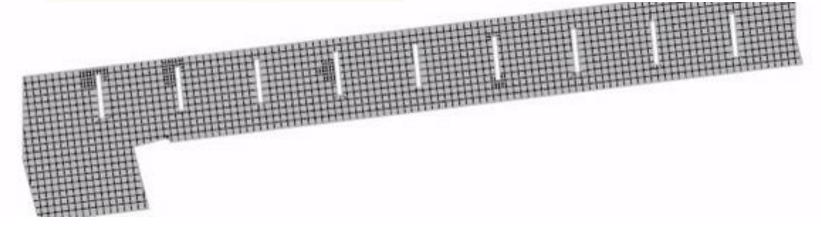




динамически изменяющаяся расчетная сетка

задание свойств перестроителя расчетной сетки

задание качества расчетной сетки и алгоритма ее расчета



динамически изменяющаяся расчетная сетка

перестроение расчетной сетки в результате вращения рукоятей с лопатками

анимация изменения 2D расчетной сетки

результаты расчетов

визуализа<mark>ция</mark> результатов движе<mark>ния мат</mark>ериала

количество частиц

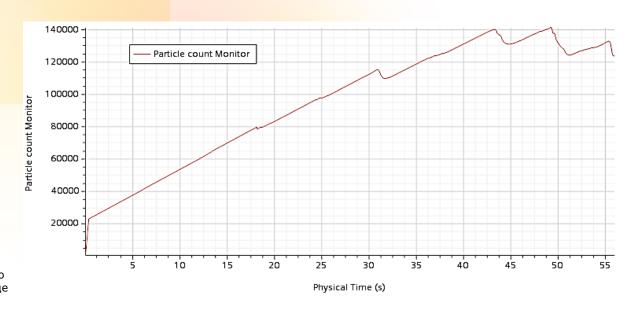


график изменения общего количество частиц на поде

визуализация результатов движения материала

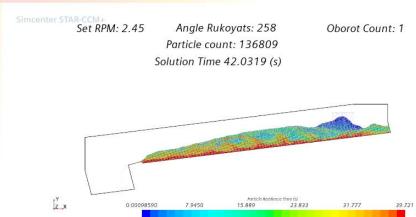
количество частиц

— Particle_Out_Count Moni 3000 Particle_Out_Count Monitor 2500 2000 1500 1000 500 20 25 35 15 30 Physical Time (s)

график изменения количества частиц на выходе из пода

визуализа<mark>ция</mark> результатов движения материала

количество частиц


распределение высоты слоя материала на поде

скорость и время нахождения материала на поде без воздействия лопаток

Скорость движения частиц Simcenter STAR-CCM+ Set RPM: 2.45 Angle Rukoyats: 258 Oborot Count: 1 Current Iteration: 617 Solution Time 42.0408 (s) SubStep: 69 SubStepMax: 69 dt_DEM: 0.000985902 (s) dt_Mesh: 0.0680272 (s) dt_Angle in Deg: 1 DEM_InjectionFlowRate: 1.38792e+08 (/s) Particle count: 136835

время нахождения частиц на поде

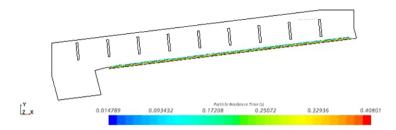
скорость и время нахождения материала на поде под воздействием лопаток

скорость движения частиц время нахождения частиц на поде Set RPM: 2.45 Angle Rukoyats: 276 Oborot Count: 2 Current Iteration: 995 Solution Time 67.7314 (s) SubStep: 45 SubStepMax: 69 dt Mesh: 0.0680272 (s) dt DEM: 0.000985902 (s) dt Angle in Deg: 1 DEM_InjectionFlowRate: 1.51273e+08 (/s) Particle count: 149140 Z X Z X

Set RPM: 2.45 Angle Rukoyats: 276 Oborot Count: 2 Particle count: 149140 Solution Time 67.7314 (s) 0.00098590 36.275 48.367 60.458

скорость и время нахождения материала на поде. вращение лопаток

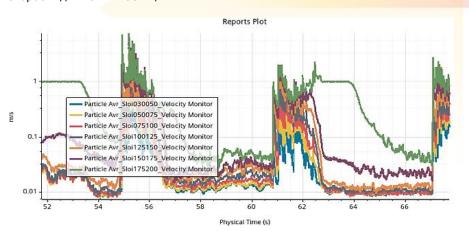
0.44996


0.59994

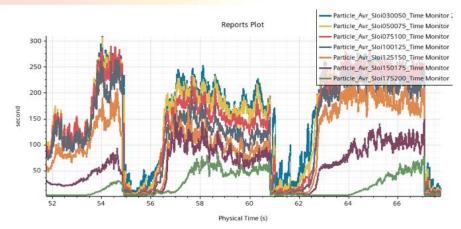
0.74992

Simcenter STAR-CCM+ Set RPM: 2.45 Angle Rukoyats: 6 Oborot Count: 0 Current Iteration: 5 Solution Time 0.408163 (s) SubStep: 69 SubStepMax: 69 dt_DEM: 0.000985902 (s) dt_Mesh: 0.0680272 (s) dt_Angle in Deg: 1 DEM_InjectionFlowRate: 2.32508e+07 (/s) Particle count: 22923

время нахождения частиц на поде

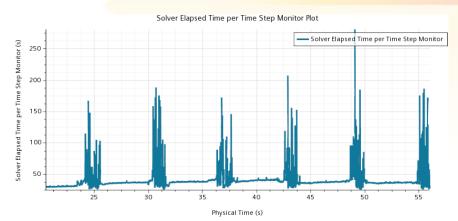


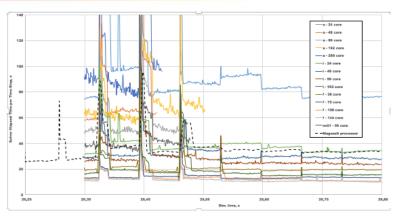
0.14999



скорость и время нахождения материала на поде послойно

скорость движения частиц


время нахождения частиц на поде



алгоритмическая сложность вычисления

анализ времени расчета одного шага*

анализ времени расчета одного шага на разных конфигурациях вычислительного кластера*

^{*}Тестирование проводилось на вычислительном кластере Крыловского НИИ г Санкт-Петербург.

анализ модельных решений

Вычислительная сложность просчета 1 оборота с заданной скоростью вращения рукоятей - 1 неделя. Оптимальный выбор для расчета мат. модели – 96-ядерная машина.

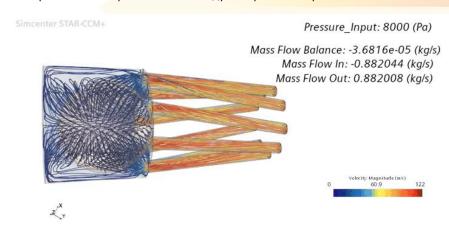
вид снизу на нижний под вращающейся печи Бета Рекорд 100-2

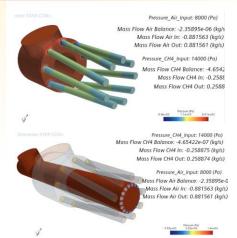
предложенная мат. модель (вариант 3) позволяет:

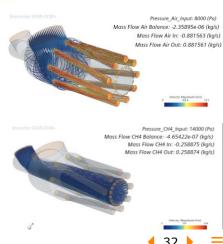
- без аналитического вычисления строить динамическую расчетную область для разных количеств рукоятей и лопаток, учитывая при этом разновариантный поворот лопаток относительно рукоятей;
- получать профили движения материала по длине пода как для подвижных, так и малоподвижных слоев;
- учитывать сползание/подъем материала для сплошных и колодезных подов (нечетный/четный под);
- оценить скоростные и временные параметры для слоя материала, а также его пористость.

выводы

Вид на многоподовую печь Бета Рекорд 100-2. Комплекс плотноспеченных порошков Рекорд, Саткинская производственная площадка Группы Магнезит

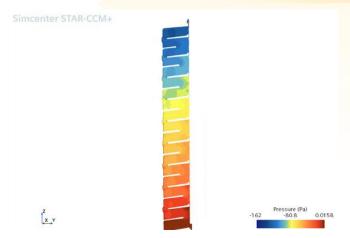

рекомендации по построению вычислений для всей многоподовой печи


- произвести варьирование разных скоростей вращения рукоятей и производительности печи;
- рассмотреть движения материала на всех подах с 1 по 19 в 2D постановке (3 вариант);
- рассмотреть движения материала на всех подах с 1 по 19 в постановке 1/32 сектора (2 вариант);
- рассмотреть движение материала в разных программах Star CCM+, EDEM, ESSS Rocky, в том числе с использованием открытых сред программирования (китайский язык параллельного программирования TaiChi);
- построить и проанализировать работу всей печи при разных параметрах нагрева и производительности (1 вариант);



газодинамика горелки по воздуху горения и природному газу

векторное поле скорости потока воздуха горения в горелке

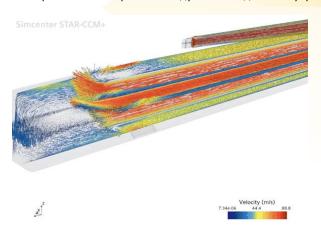


газодинамика газа на подах печи 1/32 (вариант 2)

визуализация давления в печи

визуализация скорости воздуха в печи

Simcenter STAR-CCM

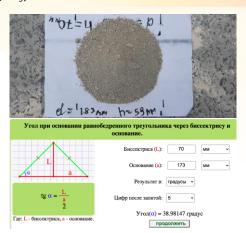


Velocity: Magnitude (m/s) 2.5 5

газодинамика газа на подах печи 1/32 (вариант 2)

векторное поле скоростей воздуха охлаждения внутри рукоятей

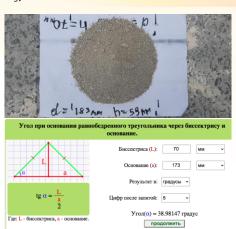
скорость и давление воздуха в рукоятях пода печи

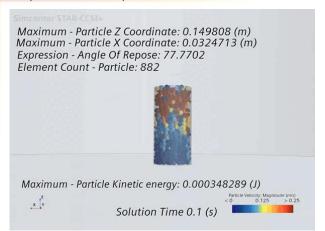


тест на угол откоса материала в печи

Тест сырого магнезита (MgCO₃)

Тест обожженного магнезита (MgO)




тест на угол откоса материала в печи

Тест сырого магнезита (MgCO₃)

визуализация эксперимента

благодарности

выражаю благодарность сотрудникам Группы Магнезит:

- Дацко Алексею Николаевичу, ведущему специалисту Департамента стратегического развития;
- Туйгунову Руслану Юлдыбаевичу, руководителю инженерно-конструкторской группы управления ремонтов;
- Байсарову Александру Федоровичу, специалисту по проектированию управления Инжиниринга Проектов и Производства работ, проектно-конструкторский отдел.

спасибо

Борзов Андрей Николаевич

197342 г.Санкт-Петербург, ул. Белоостровская, д.17, к.2а, офис 504

телефон: +7 (812) 326-07-90 e-mail: aborzov@magnezit.com

сайт Группы Магнезит